### FRACTAL STATISTICAL ANALYSIS

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

Albert, J.S. & Reis, R.E., eds. (2011). Historical biogeography of neotropical freshwater fishes. Berkeley: University of California Press.388pp.

Graybill, F. A. (1976). Theory and application of the linear model. Duxbury, North Scituate, Massachusetts.

Humphries, N.E., Queiroz, N., Dyer, J.R., Pade, N.G., Musyl, M.K., Schaefer, K.M., Fuller, D.W., Brunnschweiler, J.M., Doyle, T.K., Houghton, J.D., Hays, G.C., Jones, C.S., Noble, L.R., Wearmouth, V.J., Southall, E.J., Sims, D.W. (2010). Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature, 465 (7301), 1066– 1069. doi:10.1038/nature09116

Klaus, A., Yu, S. & Plenz, D. (2011). Statistical analyses support power law distributions found in neuronal avalanches. PLoS ONE, 6(5), e19779. doi:10.1371/ journal.pone.0019779

Mandelbrot, B.B. (1983). The fractal geometry of nature. W.H. Freeman. San Francisco. California.

Neukum, G. & Ivanov, B.A. (1994). Crater size distributions and impact probabilities on Earth from lunar, terrestrial-planet, and asteroid cratering data. In T. Gehrels (ed.), Hazards Due to Comets and Asteroids, University of Arizona Press, Tucson, Arizona, 359–416.

Newman, M.E. J. (2005). Power laws, pareto distributions and Zipf’s law”. Contemporary Physics, 46(5): 323–351.

Nydick, S.W. (2012). A different(ial) way matrix derivatives again. University of Minnesota. Retrieve from http://www.tc.umn.edu/~nydic001/docs/unpubs/ Magnus_Matrix_Differentials_Presentation.pdf on Dec. 5, 2014.

Palmer, M.W. (1988). Fractal geometry: a tool for describing spatial patterns of plant communities. Vegetatio, 75 (1), 91–102. doi:10.1007/BF00044631

### Refbacks

- There are currently no refbacks.